Organelle Probe
Organelles are micro-organs with specific morphological structures and functions in the cytoplasm, also called pseudo-organs or substructures. The plastids and vacuoles can be distinguished under a light microscope, and other organelles generally need to be observed with the help of an electron microscope. Organelles are generally considered to be microstructures or micro-organs that have a certain shape and function in the cytoplasm. However, there are some different opinions on the scope of the term "organelle". The organelles in the cell mainly include: mitochondria, endoplasmic reticulum, centrosome, chloroplast, Golgi apparatus, ribosome and so on. They form the basic structure of cells, enabling them to work and function normally.
Figure 1. Organelles.
Introductions
Although most cell biologists consider the term "organelle" to be synonymous with "cell compartment", the space is usually combined by one or two lipid bilayers, but some cell biologists choose to restrict the term to include only Those cell compartments that contain DNA. Derived from previously autonomous micro-organisms obtained through endosymbiosis.
According to this definition, there will be only two major types of organelles (ie, organelles that contain their own DNA and are derived from endosymbiotic bacteria):
Mitochondria (in almost all eukaryotes)
Plastids (for example in plants, algae and some protozoa).
It is also suggested that other organelles have an endosymbiotic origin but do not contain their own DNA (especially flagella-see the evolution of flagella).
A second, less restrictive definition of organelles is that they are membrane-bound structures. However, even with this definition, it has been shown that certain parts of the cell are different functional units and do not qualify as organelles. Therefore, the use of organelles to refer to non-membrane-bound structures, such as ribosomes, is common and accepted. This has led to a lot of literature setting the boundaries between membrane-bound and non-membrane-bound organelles. Non-membrane-bound organelles, also known as large biomolecular complexes, are large assemblies of macromolecules with specific functions and special functions, but they lack membrane boundaries. Many of these are called "protein organelles" because many of these structures are made of proteins.
American cell biologist K. R. Porter observed the cells cultured in vitro with glutaraldehyde fixation with a high-penetration high-pressure electron microscope before discovering a microbeam network in the cell matrix. So the matrix is divided into two parts: ① microbeam network, distributed throughout the cell, composed of protein-based microbeam fibers. ② Water-like cyberspace, in which a variety of small molecules such as sugar, amino acids, inorganic salts are dissolved or suspended. The edge of the microbeam network is attached to the plasma membrane of the cell, and interweaves with cytoskeleton components such as microtubules and microfilaments to form a network frame, supporting endoplasmic reticulum, mitochondria and other organelles. Free polysomes are suspended at the intersections of the microbeam network. The entire cytoplasm presents a complex structural order.
Some people first treated the cells with detergents to remove soluble proteins, and then used a modified water-drying method to prepare cell specimens. Microbeam structures were not visible under an electron microscope. Without a detergent treatment, a microbeam network appears. Therefore, it is uncertain whether the microbeam network really exists.
BOC Sciences provides a series of probes that can be used to detect different organelles, including mitochondrial probes, endoplasmic reticulum probes, Golgi probes, lysosomal probes, etc.
Reference:
- Nott TJ.; et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Molecular Cell. 2015, 57 (5): 936–947.

CAS No.:
Purity:

CAS No.:
Purity:
Ion Probe
- Calcium Probe
- Chloride Probes
- Copper Probes
- Fluoride Probe
- Iron (III) Probes
- Magnesium Probes
- Sodium Probes
- Zinc Probes
Metal Probe
Organelle Probe
- Endoplasmic Reticulum Fluorescent Probe
- Golgi Fluorescent Probe
- Lysosomal Fluorescent Probe
- Mitochondrial Fluorescent Probe
Other Probes
- Cyanide Probes
- Cysteine Probe
- Fluo-2 AM Probes
- Fluo-2 Probes
- Fluo-3 AM Probes
- Fluo-3 Probes
- Fluorescent Probes for Imaging Bacteria
- Fluorescent Probes for Imaging Bacteria
- Glucose Probes
- Glucose Probes
- Glutathione (GSH) Probes
- Glutathione (GSH) Probes
- Indo-1 Probes
- Nitric Oxide Probes
- Nitric Oxide Probes
- Viscosity Probes
- Viscosity Probes
PH Probe
Highlights
-
Diverse Portfolio
Comprehensive range of fluorescent probes and dyes.
-
High Purity
Stringent quality control ensures superior reagent purity.
-
Custom Synthesis
Tailored fluorescent probes for specific research needs.
-
Strong Expertise
Experienced team in fluorescent dye development.
-
Global Supply
Reliable worldwide distribution and efficient logistics.
-
Advanced Technology
Cutting-edge synthesis and analytical techniques utilized.
-
Competitive Pricing
Cost-effective solutions without compromising quality.
-
Fast Delivery
Rapid processing and shipping for urgent orders.
-
Technical Support
Professional guidance for selection and application.
-
Regulatory Compliance
Adheres to international quality and safety standards.
Blogs & Technical Articles

- Hoechst Dyes: Definition, Structure, Mechanism and Applications
- Mastering the Spectrum: A Comprehensive Guide to Cy3 and Cy5 Dyes
- Fluorescent Probes: Definition, Structure, Types and Application
- Fluorescent Dyes: Definition, Mechanism, Types and Application
- Coumarin Dyes: Definition, Structure, Benefits, Synthesis and Uses
- BODIPY Dyes: Definition, Structure, Synthesis and Uses
- Cyanine Dyes: Definition, Structure, Types and Uses
- Fluorescein Dyes: Definition, Structure, Synthesis and Uses
- Rhodamine Dyes: Definition, Structure, Uses, Excitation and Emission
- Unlocking the Power of Fluorescence Imaging: A Comprehensive Guide
- Cell Imaging: Definitions, Systems, Protocols, Dyes, and Applications
- Lipid Staining: Definition, Principles, Methods, Dyes, and Uses
- Flow Cytometry: Definition, Principles, Protocols, Dyes, and Uses
- Nucleic Acid Staining: Definition, Principles, Dyes, Procedures, and Uses
- DNA Staining: Definition, Procedures, Benefits, Dyes and Uses
- Cell Staining: Definition, Principles, Protocols, Dyes, and Uses
- Ion Imaging: Definition, Principles, Benefits, Dyes, and Uses
- Fluorescent Labeling: Definition, Principles, Types and Applications
Online Inquiry